

Buffer Overflow and how to leverage it

The buffer space goes downward. If you are properly sanitizing your buffer space, by the time the information reaches the EBP it should stop
and contain the characters that you are sending. However, if you have a buffer overflow attack you reach over the EBP and into the EIP.

The EIP is a Pointer/Return Address. We can use this address to point to directions that we instruct. The
directions will be malicious code that will give us a reverse shell. If you can write past the EBP to the EIP
you can take control of the stack.

Steps to Conduct a Buffer Overflow:

1. Spiking: A method that we use to find the vulnerable part of the program
2. Fuzzing: Throwing a bunch of characters at a program to see if we can break it
3. Finding the Offset: Finding out at what point we did break it
4. Use the Offset to overwrite the EIP
5. Finding the Bad Characters
6. Finding the Right Module
7. Generating Shellcode
8. Root

Complete Step-by-Step to performing a Buffer Overflow
Spiking multiple commands (e.g. SRUN, TRUN, GMON) to find vulnerabilities:

After finding a vulnerable server connect to see what commands can be run.
Generate a script which can be used to spike the commands
e.g.

After Finding vulnerable server use tool generic_send_tcp and a spike script

Fuzzing

Run this fuzzing script to determine
where the server will crash.

ImmunityDebugger windows after the server has crashed:

Finding the Offset
TOOL: MSF "Pattern Create"

Use value found when running fuzzer

Copy the output from Pattern Create and use it to adjust our fuzzing script to create our offset script

When executed, this will give
us the value of the EIP

Error Connecting indicates that our exception has been thrown.

We have overwritten everything successfully and we are interested now in the EIP value

At this point we will use our EIP finding and the MSF tool as seen below to find a pattern offset

Overwriting the EIP
*Our value of 2003 gets us to the EIP and the EIP is 4 bytes long. We are trying to overwrite those 4 bytes

We start by adjusting the script we used to find the offset to ensure that we are overwriting the EIP

When executed this will
over write the EIP with B's
or 42424242 which means that
we now control the EIP

Finding Bad Characters
When talking about finding bad characters we are talking about this is relation to generating shell code
When we generate shell code we need to know what characters are good for the shell code and what characters are bad for the shell code
We will determine this by running all the hex characters through our program and find out which ones cause problems

Find a Bad Chars list: *Null byte is excluded from the list below because it is obviously a bad character

Using the BadChars list we will edit the script we created for Overwriting the EIP:

We execute the script and it will again break the program, Overwriting the EIP with B's (42424242)

HOWEVER, this time we are interested in the HEX Dump. To see the Hex Dump at the ESP we right click and select "Follow in Dump"

Now what we will do is look through the Hex Dump and see if anything is out of place from 01-FF. In this particular instance nothing is out of place.
If there was a bad character it would be out of place e.g. 10, 11, 13 (12 is missing and it is likely a bad character)

**VulnServer does not have an bad characters. However, there is an example of bad chars:
* The bad chars will not always present as "B0", but just appear out of place.
* You will want to write down all the bad chars for when it comes time to generate shell code

Finding the Right Module
Finding the Right module means that we are finding a DLL or something similar in a program that has no memory protections. (AKA No DEP/ASLR/SafeSEH, etc)
Tool: Use Mona Modules with Immunity Debugger
Mona Modules Needs to be put into a specific folder Here:
*Find Mona Modules on GitHub

Now we need to Exit and Reattach and then run a command in the bottom of Immunity Debugger:

We are looking for something that is attached to our victim server and also False Across the board (ideally)
This will allows us to see the protection settings as seen below

Finding the OpCode Equivalent to a JMP (Jump) AKA converting Assembly Language into Hex Code.

First locate nasm_shell:

*Copy the ruby and paste it into the kali terminal

* Use JMP as our pointer, and then our pointer will "Jump" to our malicious shell code

The HexCode Equivalent of JMP ESP is FFE4
We will use this information for the next part

Return to Immunity Debugger

*We are looking for these return addresses, and we will take note of these and go down the list to see what works for us.

Now we will go back to kali, exit our nasm shell and adjust our python script.

*** Notice that the shellcode now
Includes the first return address
we found and it is BACKWARDS

Now we save our script and return to Immunity Debugger where we select this button and enter our found JMP code

Now we will set a break point on this location by hitting F2

This will allow us to overflow the buffer, but it wont Jump yet because we have not given it anywhere to jump. It will hit the break point and await further instructions.
This allows us to see that we are hitting the exact point of the EIP
Now we go back to kali and execute our script.

Return to Immunity Debugger and we will find that the breakpoint happened at the exact poin that we wanted it to.

Generating Shellcode and Getting Root

Explaination:
EXITFUNC=thread makes the exploit more stable
c flag exports into c
a flag is for architecture "x86"
b flag is for bad characters. In this example we only had the NULL byte, but this is where you would include all found bad characters

We grab the generated shell code and we are going to put it into our adjusted python script (don't include the semi colon at the end)

Between our pointer and our overflow we need to include "nops".
nops means "no operations" are basically padding. May also be referred to as "nops sled"
So we are adding a little bit of space between our JMP command and our shell code
This padding can help prevent interference in the space between the JMP and shell code
You may have to adjust this to see what works. 8 bytes, 16 bytes, 32 bytes, etc

Now we will set up a NetCat Listener
Then start the victim server as Admin and execute your script.
If done properly you will return a shell

